The Amygdala Is a Chemosensor that Detects Carbon Dioxide and Acidosis to Elicit Fear Behavior
نویسندگان
چکیده
The amygdala processes and directs inputs and outputs that are key to fear behavior. However, whether it directly senses fear-evoking stimuli is unknown. Because the amygdala expresses acid-sensing ion channel-1a (ASIC1a), and ASIC1a is required for normal fear responses, we hypothesized that the amygdala might detect a reduced pH. We found that inhaled CO(2) reduced brain pH and evoked fear behavior in mice. Eliminating or inhibiting ASIC1a markedly impaired this activity, and localized ASIC1a expression in the amygdala rescued the CO(2)-induced fear deficit of ASIC1a null animals. Buffering pH attenuated fear behavior, whereas directly reducing pH with amygdala microinjections reproduced the effect of CO(2). These data identify the amygdala as an important chemosensor that detects hypercarbia and acidosis and initiates behavioral responses. They also give a molecular explanation for how rising CO(2) concentrations elicit intense fear and provide a foundation for dissecting the bases of anxiety and panic disorders.
منابع مشابه
The bed nucleus of the stria terminalis is critical for anxiety-related behavior evoked by CO2 and acidosis.
Carbon dioxide (CO2) inhalation lowers brain pH and induces anxiety, fear, and panic responses in humans. In mice, CO2 produces freezing and avoidance behavior that has been suggested to depend on the amygdala. However, a recent study in humans with bilateral amygdala lesions revealed that CO2 can trigger fear and panic even in the absence of amygdalae, suggesting the importance of extra-amygda...
متن کاملThe human ortholog of acid-sensing ion channel gene ASIC1a is associated with panic disorder and amygdala structure and function.
BACKGROUND Individuals with panic disorder (PD) exhibit a hypersensitivity to inhaled carbon dioxide, possibly reflecting a lowered threshold for sensing signals of suffocation. Animal studies have shown that carbon dioxide-mediated fear behavior depends on chemosensing of acidosis in the amygdala via the acid-sensing ion channel ASIC1a. We examined whether the human ortholog of the ASIC1a gene...
متن کاملTransient acidosis while retrieving a fear-related memory enhances its lability
Attenuating the strength of fearful memories could benefit people disabled by memories of past trauma. Pavlovian conditioning experiments indicate that a retrieval cue can return a conditioned aversive memory to a labile state. However, means to enhance retrieval and render a memory more labile are unknown. We hypothesized that augmenting synaptic signaling during retrieval would increase memor...
متن کاملAn Acid-Sensing Channel Sows Fear and Panic
The amygdala is a brain region that coordinates fear responses to a variety of threats. Ziemann et al. (2009) now show that acid-sensing channels in the amygdala mediate fear responses that accompany inhalation of carbon dioxide, suggesting that aberrant chemosensation may underlie anxiety disorders associated with a fear of suffocation.
متن کاملRole of Amygdala-Infralimbic Cortex Circuitry in Glucocorticoid-induced Facilitation of Auditory Fear Memory Extinction
Introduction: The basolateral amygdala (BLA) and infralimbic area (IL) of the medial prefrontal cortex (mPFC) are two interconnected brain structures that mediate both fear memory expression and extinction. Besides the well-known role of the BLA in the acquisition and expression of fear memory, projections from IL to BLA inhibit fear expression and have a critical role in fear extinction. Howev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 139 شماره
صفحات -
تاریخ انتشار 2009